P P SAVANI UNIVERSITY

Third Semester of B. Tech. Examination May 2019

SESH2031 Differential Methods for Chemical Engineers

16.05.2019, Thursday

Instructions:

Time: 09:00 a.m. To 11:30 a.m.

Maximum Marks: 60

1. The question paper comprises of two sections. 2. Section I and II must be attempted in separate answer sheets. 3. Make suitable assumptions and draw neat figures wherever required. 4. Use of scientific calculator is allowed. SECTION - I Answer the following. (Any Five) [05] (i) For $y_1 = e^x \& y_2 = xe^x$ find Wronskian of $y'' - 2y' + y = e^x \log x$. b) e^{-2x} (ii) $L[te^{-t}]$ is b) # (S+1) 2 a) # (S+1) 2 a) # (iii) The order and degree of the differential equation $\frac{d^2y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}$ are respectively a) $\frac{3}{2}$, 2 b) 2, 3 (iv) If $P(x, y)dx + x \sin y dy = 0$ is exact then P can be a) $\sin y + \cos y$ b) $-\sin y$ c) $x^2 - \cos y$ d) $\cos y$ (v) For the differential equation in the form Pp + Qq = R subsidiary equation is b) $\frac{dx}{p} = -\frac{dy}{Q} = \frac{dz}{R}$ c) $\frac{dx}{p^2} = \frac{dy}{Q^2} = \frac{dz}{R^2}$ d) $\frac{dx}{p^2} = -\frac{dy}{Q^2} = \frac{dz}{R^2}$ (vi) Solution of the PDE: $z = px + qy + p^2q^2$ a) $z = ax + by + \sqrt{ab}$ b) $z = ax + by + a^2b^2$ c) z = ax + byd) None of these Q-2 (a) Answer the following. (Any Two) 1. Solve: $\frac{\partial^2 z}{\partial x \partial y} = e^{-y} \cos x$ 2. Form the partial differential equation $z = (x-2)^2 + (y-3)^2$. 3. Solve: $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$ (b) Answer the following (Any Two). [06] **1.** Define General solution of ODE and solve $(D^3 + 1)y = 0$ 2. Solve PDE: $yp = 2yx + \log q$. 3. Solve ODE: $\frac{dy}{dx} + \frac{3y}{x} = \frac{\sin x}{x^3}$ Answer the following. (Any Three) Q-3 [05] (i) Solve: $(2x \log x - xy) dy + 2y dx = 0$ (ii) Find the general solution of $y'' - 2y' - 3y = 6e^{-x} - 8e^{x}$ using method of undetermined coefficients.

Solve PDE: $4r + 12s + 9t = e^{3x-2y}$.

Find the Laplace transform of $f(t) = \begin{cases} 0 : 0 \le t < 1 \\ t : 1 \le t < 4 \\ 0 : t \ge 4 \end{cases}$

(iii)

SECTION - II

Q-1	Answer the following. (Any Five)				
(i	Product of two even or two odd functions is				[05]
	a) even	b) odd	c) prime	d) aliasing	
(ii)	The state of the 13		LtoTang GRAG com	u) anasing	
	a) $-\frac{kz}{z-1}$		b) $\frac{kz}{z-1}$		
	c) $\frac{kz}{z+1}$		d) None of these		
(iii)					
	14	n = 3:	-) 2		
(iv)			c) 3	d) -1	
	.) 4	0) 0	c) 2	MAT contractor of the	
(v)	Which of the following is an even function of t?				
	a) t ² b	$) t^2 - 4t$	c) $\sin 2t - 4t$	d) $t^3 + 6$	
(vi)	Inverse Z-Transform of $\frac{1}{z-a}$ is				
		a^{n+1}	c) $(-a)^{n-1}$		
Q-2(a)	Answer the following. (A	ny Two)		d) $(-a)^{n+1}$	
1.	Define Fourier series expansion for the period 21				[04]
2.	Find the Z-transform of $\sin (3n + 5)$				
3.	Define Fourier Sine & Cosine Half range series				
Q-2(b)	Answer the following. (Any Two)				[06]
1.	Find the half-range sine series of $f(x) = x^2$ in the interval $(0, \pi)$.				[06]
2.	Use convolution theorem to evaluate inverse Z transform of $\left(\frac{z}{z-a}\right)^2$.				
3.	Find the Fourier size $t = 0$.				
٥.	Find the Fourier sine transform of $f(t)$ where, $f(t) = \begin{cases} t, 0 \le t \le 1 \\ 0, t > 1 \end{cases}$				
Q-3	Answer the following. (Any Three)				
(i)	Find the Fourier series of $f(x) = x^2$ where $-2 \le x \le 2$				[05]
(ii)	Find the Fourier series to represent $f(x) = e^{ax}$ in the integral				and a second
(iii)	Evaluate Fourier cosine integral of given function $f(x) = e^{-kx}$ where $x > 0$.				
(iv)	and 2 draitsform of following:				
	a) $\sin(3n+5)$				
	b) $3n-4\sin\frac{n\pi}{4}+5a$.				
